Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35161786

RESUMO

This work presents the CODEUS platform, which includes a simulation tool together with an online experimental demonstrator to offer analysis and testing flexibility for researchers and developers in Ultrasonic Indoor Positioning Systems (UIPSs). The simulation platform allows most common encoding techniques and sequences to be tested in a configurable UIPS. It models the signal modulation and processing, the ultrasonic transducers' response, the beacon distribution, the channel propagation effects, the synchronism, and the application of different positioning algorithms. CODEUS provides results and performance analysis for different metrics and at different stages of the signal processing. The UIPS simulation tool is specified by means of the MATLAB© App-Designer environment, which enables the definition of a user-friendly interface. It has also been linked to an online demonstrator that can be managed remotely by means of a website, thus avoiding any hardware requirement or equipment on behalf of researchers. This demonstrator allows the selected transmission schemes, modulation or encoding techniques to be validated in a real UIPS, therefore enabling a fast and easy way of carrying out experimental tests in a laboratory environment, while avoiding the time-consuming tasks related to electronic design and prototyping in the UIPS field. Both simulator and online demonstrator are freely available for researchers and students through the corresponding website.


Assuntos
Processamento de Sinais Assistido por Computador , Ultrassom , Algoritmos , Simulação por Computador , Humanos
2.
Sensors (Basel) ; 21(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34770358

RESUMO

Ultrasonic local positioning systems (ULPS) have been brought to the attention of researchers as one of the possibilities that can be used for indoor localization. Acoustic systems combine a suitable trade-off between precision, ease of development, and cost. This work proposes a method for measuring the time of arrival of encoded emissions from a set of ultrasonic beacons, which are used to implement an accurate ULPS. This method uses the generalized cross-correlation technique with PHAT filter and weighting factor ß (GCC-PHAT-ß). To improve the performance of the GCC-PHAT-ß in encoded emission detection, the employment is proposed of mixed-medium multiple-access techniques, based on code division and time division multiplexing of beacon emissions (CDMA and TDMA respectively), and to dynamically adjust the PHAT filter weighting factor. The receiver position is obtained by hyperbolic multilateration from the time differences of arrival (TDoA) between a reference beacon and the rest, thus avoiding the need for receiver synchronization. The results show how the dynamic adaptation of the weighting factor significantly reduces positioning errors from 20 cm to 2 cm in 80% of measurements. The simulated and real experiments prove that the proposed algorithms improve the performance of the ULPS in situations with lower signal-to-noise ratios (SNR) than 0 dB and in environments where the multipath effect makes it difficult to correctly detect the encoded ultrasonic emissions.

3.
Sensors (Basel) ; 21(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802216

RESUMO

Indoor positioning remains a challenge and, despite much research and development carried out in the last decade, there is still no standard as with the Global Navigation Satellite Systems (GNSS) outdoors. This paper presents an indoor positioning system called LOCATE-US with adjustable granularity for use with commercial mobile devices, such as smartphones or tablets. LOCATE-US is privacy-oriented and allows every device to compute its own position by fusing ultrasonic, inertial sensor measurements and map information. Ultrasonic Local Positioning Systems (U-LPS) based on encoded signals are placed in critical zones that require an accuracy below a few decimeters to correct the accumulated drift errors of the inertial measurements. These systems are well suited to work at room level as walls confine acoustic waves inside. To avoid audible artifacts, the U-LPS emission is set at 41.67 kHz, and an ultrasonic acquisition module with reduced dimensions is attached to the mobile device through the USB port to capture signals. Processing in the mobile device involves an improved Time Differences of Arrival (TDOA) estimation that is fused with the measurements from an external inertial sensor to obtain real-time location and trajectory display at a 10 Hz rate. Graph-matching has also been included, considering available prior knowledge about the navigation scenario. This kind of device is an adequate platform for Location-Based Services (LBS), enabling applications such as augmented reality, guiding applications, or people monitoring and assistance. The system architecture can easily incorporate new sensors in the future, such as UWB, RFiD or others.

4.
Sensors (Basel) ; 9(11): 8490-507, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22291520

RESUMO

In this work, an acoustic sensor network for a relative localization system is analyzed by reporting the accuracy achieved in the position estimation. The proposed system has been designed for those applications where objects are not restricted to a particular environment and thus one cannot depend on any external infrastructure to compute their positions. The objects are capable of computing spatial relations among themselves using only acoustic emissions as a ranging mechanism. The object positions are computed by a multidimensional scaling (MDS) technique and, afterwards, a least-square algorithm, based on the Levenberg-Marquardt algorithm (LMA), is applied to refine results. Regarding the position estimation, all the parameters involved in the computation of the temporary relations with the proposed ranging mechanism have been considered. The obtained results show that a fine-grained localization can be achieved considering a Gaussian distribution error in the proposed ranging mechanism. Furthermore, since acoustic sensors require a line-of-sight to properly work, the system has been tested by modeling the lost of this line-of-sight as a non-Gaussian error. A suitable position estimation has been achieved even if it is considered a bias of up to 25 of the line-of-sight measurements among a set of nodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...